Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding

نویسندگان

  • Hailiang Yu
  • Cheng Lu
  • Kiet Tieu
  • H. L. Yu
  • C. Lu
  • A. K. Tieu
  • C. Kong
چکیده

In this paper, an extended accumulative roll bonding (ARB) technique, called the 'Four-Layer Accumulative Roll Bonding (FL-ARB)' technique, is presented for the first time. This technique has been employed to produce ultrafine-grained commercial pure aluminum sheets with success. After three FL-ARB passes, the grain size of pure aluminum was seen to reduce to 380 nm. The bonding strength of the sheets after rolling has also been discussed. Theoretical calculations showed that the bonding strength of sheets processed by the FLARB technique can be 2-2.2 times greater than that by the traditional ARB technique. The main advantages of the FL-ARB technique are (a) improvement of the interface bonding, with increasing deformation in each pass, (b) applicability of the technique at room temperature to process most metals, and (c) generation of the largest equivalent strain in the workpiece with the same number of passes, compared with other severe plastic deformation techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accumulative Roll Bonding of Aluminum/Stainless Steel Sheets

An Al/Stainless Steel/Al lamellar composite was produced by roll bonding of the starting sheets at 400 °C. Afterward, the roll bonded sheet was cut in half and the accumulative roll bonding (ARB) process at room temperature was applied seven times. As a result, the central steel layer fractured and distributed in the Al matrix among different layers introduced by the repetition of roll bonding ...

متن کامل

INVESTIGATION OF TRIBOLOGICAL CHARACTERISTICS OF AL/NANO SiO2NANOCOMPOSITES PRODUCED BY ACCUMULATIVE ROLL BONDING (ARB) PROCESS

Accumulative roll-bonding process (ARB) is an important severe plastic deformation technique for production of the ultrafine grained, nanostructured and nanocomposite materials in the form of plates and sheets. In the present work, this process used for manufacturing Al/SiO 2 nanocomposites by using Aluminum 1050 alloy sheets and nano sized SiO 2 particles, at ambient temperature. After 8 cycle...

متن کامل

Annealing Effects in Twin-Roll Cast AA8006 Aluminium Sheets Processed by Accumulative Roll-Bonding

Ultrafine grained sheets were prepared from a twin-roll cast AA8006 aluminium alloy using accumulative roll-bonding process at room temperature. The evolution of microstructure of sheets after three accumulative roll-bonding passes during isochronal annealing with a constant step of 20 °C/20 min was studied by light and electron microscopy. The influence of the resulting microstructure on mecha...

متن کامل

Corrosion Behavior of Al-2wt%Cu Alloy Processed By Accumulative Roll Bonding (ARB) Process

Accumulative roll bonding (ARB) imposes severe plastic strain on materials without changing the specimen dimensions. ARB process is mostly appropriate for practical applications because it can be performed readily by the conventional rolling process. An Al-2wt%Cu alloy was subjected to ARB process up to a strain of 4.8. Stacking of materials and conventional roll-bonding are repeated in the pro...

متن کامل

Fabrication of ultra-thin nanostructured bimetallic foils by Accumulative Roll Bonding and Asymmetric Rolling

This paper reports a new technique that combines the features of Accumulative Roll Bonding (ARB) and Asymmetric Rolling (AR). This technique has been developed to enable production of ultra-thin bimetallic foils. Initially, 1.5 mm thick AA1050 and AA6061 foils were roll-bonded using ARB at 200°C, with 50% reduction. The resulting 1.5 mm bimetallic foil was subsequently thinned to 0.04 mm throug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017